Desain dan Realisasi Alat Ukur Kadar CO2 Portabel dengan Notifikasi Suara Berbasis Mikrokontroler Arduino

Authors

  • M Nuryanto Universitas Bung Karno
  • Rosalia Maria Babys Universitas Bung Karno
  • Syamsu Marlin Universitas Bung Karno

DOI:

https://doi.org/10.59039/sikomtia.v1i3.24

Keywords:

Carbon Dioxide, Arduino Microcontroller, Sound Notification, Portable Measuring Instrument, Air Quality

Abstract

Increasing levels of carbon dioxide (CO2) in the environment is a global issue that has an impact on climate change and air quality. Easily accessible CO2 measurement is important for monitoring and mitigating these impacts. This research aims to design and realize a portable CO2 level measuring instrument with sound notifications, using an Arduino microcontroller. The method used in this study is the development of microcontrollers. CO2 analyzers are designed using CO2 sensors, microcontrollers and sound output modules. Data processing and calibration are performed to ensure measurement accuracy. Tests are conducted at various locations to assess the performance of the tool in real conditions. This portable device is integrated with an audible notification system that provides immediate alerts to users when CO2 levels exceed unnatural limits. Concern for urban communities efforts to increase awareness and response to adverse air conditions, especially in open spaces and urban environments. The results showed that portable CO2 analyzers were able to measure CO2 levels with good accuracy according to the specifications of the components used. The sound notification system works to provide alerts in various conditions. Portability, ease of use make this tool useful for individuals and simple to carry to monitor and respond to changes in air quality.

Downloads

Download data is not yet available.

References

G. Marques, C. R. Ferreira, and R. Pitarma, “Indoor air quality assessment using a CO 2 monitoring system based on internet of things,” J. Med. Syst., vol. 43, pp. 1–10, 2019.

L. Schibuola and C. Tambani, “Indoor environmental quality classification of school environments by monitoring PM and CO2 concentration levels,” Atmos. Pollut. Res., vol. 11, no. 2, pp. 332–342, 2020.

A. Mikhaylov, N. Moiseev, K. Aleshin, and T. Burkhardt, “Global climate change and greenhouse effect,” Entrep. Sustain. Issues, vol. 7, no. 4, p. 2897, 2020.

R. Cassia, M. Nocioni, N. Correa-Aragunde, and L. Lamattina, “Climate change and the impact of greenhouse gasses: CO2 and NO, friends and foes of plant oxidative stress,” Front. Plant Sci., vol. 9, p. 273, 2018.

C. Milesi and G. Churkina, “Measuring and monitoring urban impacts on climate change from space,” Remote Sens., vol. 12, no. 21, p. 3494, 2020.

J. A. Poole et al., “Impact of weather and climate change with indoor and outdoor air quality in asthma: A Work Group Report of the AAAAI Environmental Exposure and Respiratory Health Committee,” J. Allergy Clin. Immunol., vol. 143, no. 5, pp. 1702–1710, 2019.

B. Lin and R. Ma, “Green technology innovations, urban innovation environment and CO2 emission reduction in China: Fresh evidence from a partially linear functional-coefficient panel model,” Technol. Forecast. Soc. Change, vol. 176, p. 121434, 2022.

A. Sodiq et al., “A review on progress made in direct air capture of CO2,” Environ. Technol. & Innov., vol. 29, p. 102991, 2023.

Z. Wang and Y. Zhu, “Do energy technology innovations contribute to CO2 emissions abatement? A spatial perspective,” Sci. Total Environ., vol. 726, p. 138574, 2020.

C. Cheng, X. Ren, K. Dong, X. Dong, and Z. Wang, “How does technological innovation mitigate CO2 emissions in OECD countries? Heterogeneous analysis using panel quantile regression,” J. Environ. Manage., vol. 280, p. 111818, 2021.

P. D. Lapshina, S. P. Kurilova, and A. A. Belitsky, “Development of an Arduino-based CO2 Monitoring Device,” in 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2019, pp. 595–597.

F. Nugroho, A. T. Oktavianthi, and A. U. Bani, “Rancang Bangun Robot Humidifier Beroda Untuk Menjaga Kelembapan Udara Ideal Mencegah Terinfeksi Bakteri Berbasis Mikrokontroler,” Build. Informatics, Technol. Sci., vol. 4, no. 2, pp. 1091–1103, 2022, doi: 10.47065/bits.v4i2.1977.

F. Mejart, Y. L. Prambodo, and H. M. Valentine, “Perancangan dan Pembuatan Alat Pemantau Lampu Lalu Lintas Simpang Lima Menggunakan Mikrokontroler Berbasis Web,” Sist. Komput. dan Teknol. Intelegensi Artifisial, vol. 1, no. 1, pp. 55–66, 2022, doi: 10.59039/sikomtia.v1i1.5.

D. Agam, A. U. Bani, and F. Nugroho, “Design and Build a Strength Recorder Soil Using Arduino Soil Moisture Sensor,” J. Eng. Technol. Comput., vol. 1, no. 3, pp. 126–132, 2022.

L. Y. I. Frare and S. Ramos, “Rancang Bangun Alat Kontrol Lampu Jarak Jauh Menggunakan Mikrokontroler Berbasis Website,” Sist. Komput. dan Teknol. Intelegensi Artifisial, vol. 1, no. 1, pp. 78–90, 2022, doi: 10.59039/sikomtia.v1i1.4.

A. U. Bani, F. Nugroho, and J. K. P. Marunduri, “Design And Prototyping Of Arduino Microcontroller-Based Vacuum Sucking Tools,” J. Math. Technol., vol. 1, no. 1, pp. 29–33, 2022.

T. Y. Irawan, Y. L. Prambodo, and I. Zulkarnain, “Rancang Bangun Alat Pengamanan Kotak Amal Menggunakan Sensor Sidik Jari dan SMS Gateway Berbasis Mikrokontroler,” Sist. Komput. dan Teknol. Intelegensi Artifisial, vol. 1, no. 1, pp. 1–12, 2022, doi: 10.59039/sikomtia.v1i1.1.

F. Nugroho, D. H. Farhan, and Y. L. Prambodo, “Rancang Bangun Alat Pendeteksi Arah dan Pengukur Kecepatan Angin Berbasis Arduino”.

M. Andi, A. U. Bani, and F. Nugroho, “Design And Manufacture Of Automated Home Lighting Regulatory Devices With Iteaduino Microcontroller Atmega 328p-Based LDR,” J. Math. Technol., vol. 1, no. 1, pp. 34–42, 2022.

Nugroho, F., & Bani, A. U. (2023). Pemahaman Dasar Metodologi Penelitian (1st ed.). Deepublish.

Downloads

Published

31-12-2023

How to Cite

Nuryanto, M., Babys, R. M., & Marlin, S. (2023). Desain dan Realisasi Alat Ukur Kadar CO2 Portabel dengan Notifikasi Suara Berbasis Mikrokontroler Arduino. Sistem Komputer Dan Teknologi Intelegensi Artifisial (SIKOMTIA), 1(3), 234–239. https://doi.org/10.59039/sikomtia.v1i3.24

Issue

Section

Articles