Optimalisasi Alat Monitoring Tetes Infus Kristaloid Berbasis Mikrokontroler ATMega328


  • Hudi Prayoga Mokodompit Universitas Bung Karno
  • Asruddin Asruddin Universitas Bung Karno
  • Junindo Abdillah Universitas Bung Karno




Crystalloid Infusion, ATMega328 Microcontroller, Photodiode Sensor, Medical Monitoring, Medical Technology Innovation


In the medical world, supervision of intravenous devices is a priority and the main one to ensure proper and measurable fluid delivery to patients. This research focuses on the development of a crystalloid infusion drip monitoring device using a microcontroller. The background of this research arises from the need for a device that is able to monitor drip infusions automatically, reduce the workload of medical personnel and increase patient safety. The methods used in this study include designing, manufacturing, and testing on tools. Photodiode sensors are selected as the main component in detecting drops of crystalloid liquid. This tool is designed to optimize other supporting sensors to be integrated as instruction modules in counting infusion fluid drops. The application of microcontroller technology in affordable infusion monitoring devices has not been widely adopted in medical practice. This research is driven by the need for reliable monitoring tools in a fast-paced medical environment and requires precision. The results of this study showed that the developed tool succeeded in optimizing the function of the photodiode sensor in counting drops of 99% crystalloid liquid produced accurately. This tool is able to operate in accordance with its original purpose, namely as a monitoring tool as well as a reminder for patient safety. The conclusion is that this microcontroller-based crystalloid infusion drip monitoring device is an innovation and good practice in the medical field. This tool not only increases efficiency in infusion monitoring but also provides additional safety for patients.


Download data is not yet available.


L. A. Gorski et al., “Infusion therapy standards of practice,” J. Infus. Nurs., vol. 44, no. 1S, pp. S1--S224, 2021.

A. A. Klein et al., “Recommendations for standards of monitoring during anaesthesia and recovery 2021: Guideline from the Association of Anaesthetists,” Anaesthesia, vol. 76, no. 9, pp. 1212–1223, 2021.

M. V. Caya, M. U. Cosindad, N. I. Marcelo, J. N. M. Santos, and J. L. Torres, “Design and implementation of an intravenous infusion control and monitoring system,” in 2019 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), 2019, pp. 68–72.

J. E. Mandel, “Understanding infusion pumps,” Anesth. & Analg., vol. 126, no. 4, pp. 1186–1189, 2018.

R. Joseph, S. W. Lee, S. V Anderson, and M. J. Morrisette, “Impact of interoperability of smart infusion pumps and an electronic medical record in critical care,” Am. J. Heal. Pharm., vol. 77, no. 15, pp. 1231–1236, 2020.

M. E. Mansour, “Design of low cost smart infusion pump,” in 2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), 2021, pp. 1–5.

A. G. G. Perry, P. A. Potter, and W. Ostendorf, Nursing interventions & clinical skills E-book. Elsevier Health Sciences, 2019.

J. M. Rothschild et al., “A controlled trial of smart infusion pumps to improve medication safety in critically ill patients,” Crit. Care Med., vol. 33, no. 3, pp. 533–540, 2005.

K. O. Schnock et al., “The frequency of intravenous medication administration errors related to smart infusion pumps: a multihospital observational study,” BMJ Qual. & Saf., vol. 26, no. 2, pp. 131–140, 2017.

C. M. Malashock, S. S. Shull, and D. A. Gould, “Effect of smart infusion pumps on medication errors related to infusion device programming,” Hosp. Pharm., vol. 39, no. 5, pp. 460–469, 2004.

E. S. Kirkendall, K. Timmons, H. Huth, K. Walsh, and K. Melton, “Human-based errors involving smart infusion pumps: a catalog of error types and prevention strategies,” Drug Saf., vol. 43, pp. 1073–1087, 2020.

M. A. Taylor and R. Jones, “Risk of medication errors with infusion pumps: a study of 1,004 events from 132 hospitals across Pennsylvania,” Patient Saf., vol. 1, no. 2, pp. 60–69, 2019.

A. F. van der Sluijs, E. R. van Slobbe-Bijlsma, A. Goossens, A. P. J. Vlaar, and D. A. Dongelmans, “Reducing errors in the administration of medication with infusion pumps in the intensive care department: A lean approach,” SAGE Open Med., vol. 7, p. 2050312118822629, 2019.

D. Oros et al., “Smart intravenous infusion dosing system,” Appl. Sci., vol. 11, no. 2, p. 513, 2021.

Nugroho, F., & Bani, A. U. (2023). Pemahaman Dasar Metodologi Penelitian (1st ed.). Deepublish.

D. Agam, A. U. Bani, and F. Nugroho, “Design and Build a Strength Recorder Soil Using Arduino Soil Moisture Sensor,” J. Eng. Technol. Comput., vol. 1, no. 3, pp. 126–132, 2022.

Z. I. Tualeka, A. U. Bani, and F. Nugroho, “Perancangan dan Pembuatan Prototype Alat Terapi Kaki Pasca Stroke Berbasis Arduino Atmega328”.

U. B. Natanail, Y. L. Prambodo, and M. T. Kurnia, “Rancang Bangun Purwarupa Alat Penyanitasi Tangan Menggunakan Sensor Ultrasonik Berbasis Arduino,” 2023.

J. Manik, J. Saputro, and Y. L. Prambodo, “Rancang Bangun Purwarupa Alat Pembuka Pintu Garasi Menggunakan Limit Switch dan Fingerprint Berbasis Arduino,” 2023.

A. K. Laia and M. T. Kurnia, “Perancangan Dan Pembuatan Alat Pengendali Pencahayaan Akuarium Berbasis Mikrokontroler,” 2022.

L. Y. I. Frare and S. Ramos, “Rancang Bangun Alat Kontrol Lampu Jarak Jauh Menggunakan Mikrokontroler Berbasis Website,” Sist. Komput. dan Teknol. Intelegensi Artifisial, vol. 1, no. 1, pp. 78–90, 2022, doi: 10.59039/sikomtia.v1i1.4.

E. Y. Duha, J. Saputro, and S. Sharyanto, “Rancang Bangun Alat Transfer Data Teks Nirkabel Bawah Air Berbasis Mikrokontroler,” 2022.

F. Nugroho, A. T. Oktavianthi, and A. U. Bani, “Rancang Bangun Robot Humidifier Beroda Untuk Menjaga Kelembapan Udara Ideal Mencegah Terinfeksi Bakteri Berbasis Mikrokontroler,” Build. Informatics, Technol. Sci., vol. 4, no. 2, pp. 1091–1103, 2022, doi: 10.47065/bits.v4i2.1977.

F. Nugroho, D. H. Farhan, and Y. L. Prambodo, “Rancang Bangun Alat Pendeteksi Arah dan Pengukur Kecepatan Angin Berbasis Arduino”.

A. Hidayatulloh, A. U. Bani, and F. Nugroho, “Design A Bird Midge Tool Using Arduino-Based Laser Sensors,” J. Math. Technol., vol. 1, no. 1, pp. 1–7, 2022.




How to Cite

Mokodompit, H. P., Asruddin, A., & Abdillah, J. (2023). Optimalisasi Alat Monitoring Tetes Infus Kristaloid Berbasis Mikrokontroler ATMega328. Sistem Komputer Dan Teknologi Intelegensi Artifisial (SIKOMTIA), 1(3), 227–233. https://doi.org/10.59039/sikomtia.v1i3.23




Most read articles by the same author(s)