Penerapan Metode Color Based Detection Menggunakan Platform ESP32-Cam Sebagai Alat Pendeteksi Ikan Betta Varian Albino

Authors

  • Fahmi Ardiansyah Universitas Bung Karno
  • Yoga Listi Prambodo Universitas Bung Karno
  • Iswidodo Iswidodo Universitas Bung Karno

DOI:

https://doi.org/10.59039/sikomtia.v1i3.17

Keywords:

ESP32-Cam, Variant Identification, Albino Betta Fish, Object Detection, Colour-Based Detection

Abstract

This research aims to overcome the problems that arise in identifying Betta fish variants, especially Albino variants, which are often difficult to distinguish by ordinary people due to difficulties in distinguishing visual differences. This problem encourages the need to develop a tool that is able to automatically distinguish Betta Albino fish variants. This research presents the concept of implementing the ESP32-Cam platform as a Betta Albino fish variant detection tool. The novelty of this research lies in the use of the ESP32-Cam platform which is an innovation as a detection tool. The urgency of this research lies in the need for a tool that can help ordinary people in identifying Betta Albino fish variants easily without requiring knowledge of Betta fish species. The method used in this research is colour-based detection using the eloquent surveillance library. The image capture process is done through an ESP32-Cam camera by utilising the concept of object detection and image processing. This research also involves the application of components such as TCS 3200, LM393, and LCD 1602 I2C to support the function of the detection tool. The results show that the Betta Albino fish variant object detection device is able to identify colour differences accurately. Through the ESP32-Cam platform, this tool successfully creates an automated solution that can distinguish Betta Albino fish variants well. In conclusion, this study confirms that the use of the ESP32-Cam platform in designing the Betta Albino fish variant detection tool can be practically applied. This tool has the potential to contribute in facilitating the accurate identification of Betta Albino fish variants to the general public.

Downloads

Download data is not yet available.

References

S. Prince Mary, S. V. Lakshmi, and S. Anuhya, “Color detection and sorting using internet of things machine,” J. Comput. Theor. Nanosci., vol. 16, no. 8, pp. 3276–3280, 2019.

A. Ambikapathy, J. Sandilya, A. Tiwari, G. Singh, and L. Varshney, “Analysis of Object Following Robot Module Using Android, Arduino and Open CV, Raspberry Pi with OpenCV and Color Based Vision Recognition,” in Advances in Power Systems and Energy Management: Select Proceedings of ETAEERE 2020, 2021, pp. 365–377.

Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan, “Contextualizing object detection and classification,” in CVPR 2011, 2011, pp. 1585–1592.

M. Lecca, M. Gottardi, B. Milosevic, and E. Farella, “A low power colour-based skin detectors for smart environments,” J. Int. Colour Assoc., vol. 16, pp. 24–40, 2016.

M. B. Nugraha, P. R. Ardianto, and D. Darlis, “Design and implementation of RFID line-follower robot system with color detection capability using fuzzy logic,” in 2015 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), 2015, pp. 75–78.

J. Atmadjaja and M. Sitanggang, Panduan Lengkap Budi Daya & Perawatan Cupang Hias. AgroMedia, 2010.

T. Cahyanto, W. A. Fadly, H. Haryono, R. A. S. Syahar, and E. Paujiah, “Diversity and Conservation Status of Ornamental Fish in Bandung, West Java, Indonesia,” J. Biota, vol. 5, no. 2, pp. 64–71, 2019.

S. P. Tamba, A. Purba, Y. E. Kusuma, M. A. S. Vidyastuti, and S. Dharma, “Implementation of the rank order centroid (roc) method to determine the favorite betta fish,” INFOKUM, vol. 9, no. 2, June, pp. 381–386, 2021.

Nugroho, F., & Bani, A. U. (2023). Pemahaman Dasar Metodologi Penelitian (1st ed.). Deepublish.

A. Sriwastwa, S. Prakash, S. Swarit, K. Kumari, S. S. Sahu, and others, “Detection of pests using color based image segmentation,” in 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), 2018, pp. 1393–1396.

A. Juliano, A. H. Hendrawan, and R. Ritzkal, “Information system prototyping of strawberry maturity stages using arduino uno and TCS3200,” J. Robot. Control, vol. 1, no. 3, pp. 86–91, 2020.

V. Vibin, P. Sivraj, and V. Vanitha, “Implementation of in-vehicle and V2V communication with basic safety message format,” in 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), 2018, pp. 637–642.

R. B. Salikhov, V. K. Abdrakhmanov, and I. N. Safargalin, “Internet of things (IoT) security alarms on ESP32-CAM,” in Journal of Physics: Conference Series, 2021, p. 12109.

F. Nugroho, A. T. Oktavianthi, and A. U. Bani, “Rancang Bangun Robot Humidifier Beroda Untuk Menjaga Kelembapan Udara Ideal Mencegah Terinfeksi Bakteri Berbasis Mikrokontroler,” Build. Informatics, Technol. Sci., vol. 4, no. 2, pp. 1091–1103, 2022, doi: 10.47065/bits.v4i2.1977.

Z. I. Tualeka, A. U. Bani, and F. Nugroho, “Perancangan dan Pembuatan Prototype Alat Terapi Kaki Pasca Stroke Berbasis Arduino Atmega328”.

P. Haruman, J. Saputro, and A. Asruddin, “Rancang Bangun Prototipe Sistem Start Engine dan Alarm Sepeda Motor Menggunakan Mikrokontroler Arduino Berbasis Android,” 2023.

A. Hidayatulloh, A. U. Bani, and F. Nugroho, “Design A Bird Midge Tool Using Arduino-Based Laser Sensors,” J. Math. Technol., vol. 1, no. 1, pp. 1–7, 2022.

D. Agam, A. U. Bani, and F. Nugroho, “Design and Build a Strength Recorder Soil Using Arduino Soil Moisture Sensor,” J. Eng. Technol. Comput., vol. 1, no. 3, pp. 126–132, 2022.

A. U. Bani, S. Damayanti, and F. Nugroho, “Design To Build Prototype Of Atmega328 Microcontroller-Based Automatic Water Tub Filling Tool,” J. Math. Technol., vol. 1, no. 1, pp. 43–52, 2022.

A. U. Bani, F. Nugroho, and A. T. Arsyendo, “Design And Manufacture Of Tools Automatic Feeding And Drinking In Farm Chickens Arduino Microcontroller-Based,” J. Math. Technol., vol. 1, no. 1, pp. 8–16, 2022.

M. Banzi and M. Shiloh, Getting started with Arduino. Maker Media, Inc., 2022.

Downloads

Published

31-12-2023

How to Cite

Ardiansyah, F., Prambodo, Y. L., & Iswidodo, I. (2023). Penerapan Metode Color Based Detection Menggunakan Platform ESP32-Cam Sebagai Alat Pendeteksi Ikan Betta Varian Albino. Sistem Komputer Dan Teknologi Intelegensi Artifisial (SIKOMTIA), 1(3), 183–191. https://doi.org/10.59039/sikomtia.v1i3.17

Issue

Section

Articles

Most read articles by the same author(s)